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Catalytic Conversion of Alcohols: Role of Sodium in Altering the 
Alkene Products Obtained with Alumina Catalysts 

Investigators frequently use alkali poi- 
sons in an effort to eliminate secondary re- 
actions and, thus, to obtain the primary 
product distribution when using alumina as 
a catalyst or support (1, 2). This poisoning 
of alumina by alkali ions has been noted by 
many authors. Pines and Haag (3) found 
that alkali was a severe poison for the dehy- 
dration of 1-butanol with alumina. Also, 
Ross and Bennett (4) determined the influ- 
ence of metal ions on alumina-catalyzed de- 
hydration of ethanol and observed that al- 
kali was a poison whose effect was 
consistently more pronounced at higher al- 
cohol pressures. Maatman and Vande 
Griend (5) found that impregnation with 
LiCl, NaCl, KCl, or CaCl* deactivated alu- 
mina for I-butanol dehydration, although in 
some cases at low salt concentration a pro- 
motional effect was observed. Pscheidl and 
Witzmann (6), using 2-propanol and Li- 
doped alumina, and Pis’man and co-work- 
ers (7, 8), using I-butanol and KOH-doped 
alumina, reported an initial increase, fol- 
lowed by a decrease, in activity as alkali 
concentration was increased. 

Catalytic activity is difficult to accurately 
measure for a reaction such as alcohol de- 
hydration where the alcohol reactant and a 
product, water, may be strongly absorbed. 
Selectivity may be used together with activ- 
ity to provide a more accurate picture of the 
reaction mechanism. 

The catalysts were prepared by impreg- 
nating Degussa aluminum oxide C with 
aqueous sodium nitrate using the incipient 
wetness technique. The impregnated alu- 
mina was dried at 120°C and then calcined 
at 500°C in air. The alcohol conversions 
were carried out in a plug flow reactor. A 
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mixture of 2-butanol (25 mole%) and 2-oc- 
tanol was converted after activating the cat- 
alyst at 500°C in air for 4 h. Conversions 
were effected at atmospheric pressure with- 
out added carrier gas. Liquid products were 
collected at intervals and were analyzed for 
total conversion by GC using a Carbowax 
20M column. Butene gas samples were col- 
lected in a gas syringe and were analyzed 
using a P$‘-oxydipropinonitrile column. 

A pseudo-rate constant was calculated 
from the data for the conversion of 2-octa- 
nol. Plots of conversion of 2-octanol vs 
flow-’ (space time) were reasonably linear 
for the higher flow rates (lower conversion) 
as is required for a zero-order reaction. Al- 
cohol dehydration, at higher alcohol pres- 
sures, has been shown to be a zero-order 
reaction (9-12). The activity and selectivity 
of alumina for alcohol dehydration may de- 
pend on pretreatment (12). This was espe- 
cially true for the activity of Degussa alu- 
mina and the rate value shown in Fig. 1 is 
an average of several runs using different 
portions of a single alumina preparation. 
Even so, it is apparent that sodium de- 
creases the amount of alcohol dehydration 
as reported by earlier investigators. 

The products from the alumina-catalyzed 
dehydration of 2-butanol, at up to one at- 
mospheric alcohol pressure, differ from 
those obtained when 2-butanol is converted 
in the presence of 2-octanol(13) or nitrogen 
base (14). At temperatures near 200°C it ap- 
pears that the relative pressure of 2-butanol 
is too low to inhibit alkene isomerizations 
by secondary reactions. For example, at 
200°C the relative pressure for 2-butanol is 
approximately 0.05 while that of 2-octanol 
is 0.5 or greater. Thus, this secondary isom- 
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erization may be inhibited by 2-octanol bet- 
ter than by 2-butanol. For this reason, a 
mixture of 2-butanol and 2-octanol was 
used in this study. 

The amount of 1-butene does not change 
appreciably at longer reaction times from 
that obtained for the initial sample (Fig. 2). 
Even where it does show a small change, as 
in the initial samples with pure alumina, the 
truns-Zbutene content remains essentially 
constant while the amount of 1-butene in- 
creases with a concurrent decrease in c&2- 
butene. Thus it appears that the initial al- 
kene selectivity changes are the result of a 
small amount of secondary isomerization of 
the 1-butene to cis-Zbutene; a selectivity 
that is well documented for alumina (2). 

The alkene compositions for alumina and 
alkali-poisoned alumina are shown in Fig. 
3. The selectivity trend, with increasing al- 
kali content, is obvious: the amount of l- 

I I I I butene decreases more rapidly than the cis- 
0 0.5 1.0 1.5 2-butene and the amount of trans-Zbutene 

Sodlum, Wt. % increases. The alkene compositions shown 
FIG. I. The pseudo-rate constant for the conversion in Fig. 2 were obtained for four different 

of 2-butanol/2-octanol mixture with alumina and so- flow rates; no change in selectivity was 
dium-poisoned alumina. 
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FIG. 2. Alkene distribution with time-on-stream from the dehydration of 2-butanol with alkali- 
poisoned catalysts. 
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FIG. 3. The alkene distribution for the conversion of 2-butanol with alumina and alkali-poisoned 
alumina (the numbers refer to the sodium content). 

noted for increasing space velocity (and de- 
creasing conversion). Thus, the addition of 
alkali to alumina causes a drastic change in 
the initial alkene product distribution rather 
than by eliminating secondary reactions. 

It is well established that the isomeriza- 
tion of I-butene produces a high cisltrans 
ratio for the 2-butene products (25). The 
cis-2-butene appears to isomerize to trans- 
2-butene more rapidly than to I-butene 
(16). Base-catalyzed isomerization is very 
selective where I-butene isomerizes, using 
a supported NaOH catalyst, to predomi- 
nately cis-2-butene and cis-Zbutene to l- 
butene (17). Also, high temperatures 
(400°C or more) are required for the base- 
catalyzed isomerizations. Thus, an isomeri- 
zation catalyzed by strong base does not 
appear to be present in our studies. Some 
alumina-catalyzed alteration of the primary 
alkene products may be possible. However, 
both Dautzenberg and Knozinger (18) and 
Davis (13) obtained results with 2-butene 
that were consistent with the l-butene, ini- 
tially formed, isomerizing to cis-Zbutene; 
this was not observed by workers using 2- 

octanol (2.3) or nitrogen bases as poisons 
(14). For alkali-poisoned alumina the 
amount of cis-2-butene is not greater than 
was obtained with pure alumina. Thus, it 
appears that the butenes are formed by a 
mechanism other than normally observed 
for secondary isomerization reactions. 

The present results could occur if the alu- 
mina catalyst possessed two types of dehy- 
dration sites. One type of site, designated 
A, is much more active for dehydration 
than is the other type, designated B. The A 
sites selectivity form I-butene and cis-2-bu- 
tene in about equal amounts but only a 
small fraction of trans-2-butene; B sites 
form each of the three isomers in nearly 
equal amounts. The selectivity, and the low 
activity, of type B sites appear similar to 
those of a-alumina (29). We postulate that 
type A sites represent those coordinately 
unsaturated sites, similar to the Taylor con- 
cept of active sites (20), which are very ac- 
tive and impose steric requirements to pro- 
duce selectivity in the alkene formation. 
Type B sites would be those low activity 
sites found on reasonably uniform, low cur- 
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vature crystal faces, such as found on low 
surface area a-alumina. 
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